

- 1. Which possible technological improvements unfold through the application of biological acidification?
- 2. The Mash acidification
- 3. The Wort acidification
- 4. Technical and technological requirements

In comparison to the usage of technically manufactured acids, the acidification with biologically produced lactic acids offers extensive advantages:

- 1. Higher nutrition physiological values
- 2. Better growth opportunities for the yeast (zinc, biotin)
- 3. Redox Potential

Biological Acid wort are added to:

- 1. Mash acidification: balancing of deficits in the Malt quality
- 2. Wort acidification: Generally to reduce the raw material PH-value

Technological Perfecting

- 1. Higher cell growth (Zinc, Biotin)
- · Better Flocculation
- · Intensive enzymatic degradation when mashing (except iodine normality)
- · intensification of the fermentation (faster pH-collapse, better haze elimination, higher degree of attenuation after fermentation)
- · Higher Redoxpotential (less oxygen sensitivity)
- · Enhancement of the collodial-, the taste- and foam stability.

Lipoxygenas Activity

Dependency of the Lipoxygenase activity of Mash rather Wort pH:

Organoleptic Improvement

- D Taste: taste formation well-rounded, fuller bodied
- and a softer palate
- □ Hop bitter: pleasant, not indulging
- D Review: fresh, lively Character
- D Foam: fine bubbles, stable
- Ocolour: lighter and fresher

Physiological and Health Advantages

- D Metabolism: encouragement of the metabolic activity
- Digestion: positive impact of the lactic acids
- Defence mechanism: better protection against

illnesses, pathogenic bacteria is pushed back.

Gradual Reduction of the Biological Sensitivity of the Beers

- 1. Lower pH-Value
- 2. Pectinatus and Megasphera growth is not able at pH-values under 4,4 (4,5)
- Potential beer spoiling micro organisms growth is mainly not below the pH-values of 4,5
- For obligate beer spoiling micro organisms it is more difficult to grow especially when the PH-value is lower.
- The higher the attenuation limit the lower the supply of fermentable carbohydrates for the beer spoiling micro organisms
- · Growth advantages for the yeast and the surging of the beer spoiling micro organisms back as competitors.

Mash Acidification

- Increasing the Amylolysis, Proteolysis and Cytolysis during the mash creates:
 - 1. Higher colloidal Stability
 - 2. Possible shorter Mash times
 - 3. Higher Brewhouse yield
- Stronger activation of the Phosphatases can increase the buffering of the Wort
- Reduction of the Alpha-Amylase-activity can cause Problems with the iodine iodine normality

Possible analytical Impacts of a Mash acidification (100 % Malt)

pH Mash (after mashing)	5,73	5,59	5,40	5,20	
pH after mashing	5,67	5,55	5,39	5,26	
saccharification [min]	8	8	12	18	
hochmol. N [mg/100ml]	23,8	23,1	24,7	25,2	
FAN [mg/100ml]	21,5	22,1	24,8	26,5	
Anthocyanogene Img/l]	79	83	86	92	
Viscosity [mPas]	1,83	1,82	1,81	1,80	
B-Glucan Img/l]	253	249	242	230	
Bier					
Colour EBC]	7,8	7,5	7,2	6,9	
hochmol. N [mg/100ml]	18,0	18,0	19,2	20,1	
Bitterness unit [EBC]	31	30	28	27	
Foam [RSC]	130	131	131	132	
Taste DLG \varnothing	4,0	4,2	4,4	4,3	

Buffering with a Mash Acidification

- · AW
- O Bier
- pH-Abfall

MS - Mash Acidification

WS - Wort Acidification

Lactobacillus amyloysis, amylovorus

- ☐ Faster accumulation in the Beer Wort
- OHiger acidification abilities (up to 2% MS, pH <3,0)
- · Homo fermentative MS-accumulation (2 mol Ms from 1 mol Glucose)
- · Growth at high Temperatures up to 52 °C
- · fermentation of Dextrin
- · Higher proportion an L(+)-Lactate
- □ higher hop sensitivity, less growth at temperatures above 30°C
- · No formation of Amines (Histamine) and other toxins
- · No Diacetyle formation
- · Easier handling of the cultures

Example Explanation

Biologische Säuerungsanlage

- Gårtank für Sauergut,
- (2) Lagertank für Sauergut,
- (3) vom Vorlaufgefäß,
- (4) zur Wurzepfanne,
- (5) Sauergutpumpe,
- (6) zum Maischbottich,
- (7) zur Würzepfanne

Control parameters

- 1. Determintion of the lactic acid contents:
- 25 ml Substrate + Bromethymole blue as an Indicator against n/10 NaOH Tritation;
- · Consumed ml NaOH x 0,036 = % Lactic Acid
- · Temperature: 47-49 °C
- Sensoric and flavor checks
- · Dosage:
 - · for 100 kg Malt at the starting mash 40-100 g MS
 - · for 1 hl Wort (10 min. before end of boiling) 9-16 g MS

Driving parameter

- The production of the acidic Wort is normally (9 12 % Stw) diluted first Wort utilization (in an emergency an un-hopped Wort concentrate can be used)
- Before the induction of a fresh wort the fermenter should be if possible 2/3
 emptied. This reduces the acidic stress upon the lactic acid bacteria's and the beer
 spoiling micro organisms and speeds up the following acidification
- In the case of a contamination with a film forming yeast temperature with a short approx. 50 °C increase
- □ The Storage
 - · The stacking of the MS can take place in none heated hollow-ware.
 - The continuation over the weekend is without any issues possible. .
 - Using a longer storage the cultures should be taken from the log phase and be stored at 10 $^{\circ}\text{C}$

Pro sund con s

Advantages	Disadvantages
1. where applicable shortening/	1.Bitterness loss 2-2,5% higher
Optimization of the Mashing process	· higher TBZ
2. rapid lautering	· worse DMS-P cleavage
 less additional colouring in the wort preparation process 	• where applicable for stronger degradation of protein substances
· eventually better extract yields	·(ELG of the Malt is to be considered)
· Better stabilization of the zinc contents	
• where applicable a faster fermentation and maturing (FAN, Trub)	
• better foam stability (+/-), colloidal	